基于H8Sx/1544的汽车组合仪表设计

分享到:

        引言

  汽车仪表由各种仪表、指示器,特别是驾驶员用警示灯和警报器等组成,为驾驶员提供所需的汽车运行参数信息。按汽车仪表的工作原理不同,可大致分为三代。第一代汽车仪表是机械机心表;第二代汽车仪表称为电气式仪表[1];第三代为全数字汽车仪表,它是一种网络化、智能化的仪表,其功能更加强大,显示内容更加丰富,线束连接更加简单。

  目前的汽车仪表多为第三代仪表,它可以利用A/D转换或是数字脉冲直接从传感器获得数据,也可以利用CAN总线通过汽车网络获得数据;它可以通过步进电机来驱动仪表指针,也可以利用LCD屏直接显示图形或文字信息。同时它还有智能处理单元,可以与汽车其他控制单元交互信息。

 

  总体需求及设计

  汽车仪表的功能就是获取需要的数据并采用合适的方式显示出来。以前的仪表一般限制在3~4个量的显示和4~5个警告功能,现在新式仪表则达到有约15个量的显示和约40个警告监测功能。导致仪表显示信息量快速增长的主要原因有以下几方面[2]:

  ● 汽车上的新功能部件不断增加,如ABS、安全气囊、倒车雷达等;

  ● 对汽车行驶中的状态要求更加实时的了解,如胎压、水温、油耗等;

  ● 对汽车各部件的工况要求更加细致的掌握,如灯光、车门、车锁、安全带等。

        不同的信息有不同的获取方式和显示方式,目前新式仪表信息获取方式主要有三种:

  ● 通过车身总线传输;

  ●通过A/D采样转化;

  ●通过IO状态变化获取。

  对于显示方式,主要有五种方式:通过驱动步进电机带动指针转动;通过点阵LCD屏显示图形或数字信息;通过段式LCD屏或数码管显示;通过LED灯的开关显示;通过蜂鸣器的不同鸣音指示当前状态。

  根据以上要求,本文设计的汽车仪表盘节点由MCU系统、步进电机驱动、LED显示、LCD显示、报警功能、记忆功能、按键处理、LIN总线通信、高速CAN通信、低速容错CAN总线通信以及电源供给等几个方面构成(图2)。

       硬件电路设计

  H8Sx/1544是一款完全符合第三代汽车仪表需要的芯片,它具有高速运算能力的32位MCU,带有两路CAN通道,能直接驱动步进电机和LCD模块,性能参数满足汽车工业级要求[3]。外围模块包括步进电机控制PWM定时器,LCD模块接口,16位定时器脉冲单元(TPU),DMA控制器(DMAC),CAN总线控制器、串行接口,A/D转换器,警示灯和报警器的输出,LED PWM调光等。这些模块可以满足车速、转速、油量、冷却水液位的信号采集和显示,可以很容易地实现外设元件很少的仪表板电路[4]。基于H8Sx/1544的汽车仪表板框图如图3所示。

 

  6组步进电机可直接通过H8Sx/1544的PWM引脚驱动,分别用于指示汽车行驶的车速、发动机转速、冷却液温度、燃油箱的油量、机油压力和发电机电压。选用具有并行8080接口的点阵式液晶模块,可直接与MCU相连,用于显示图形和其他信息。高速CAN和低速CAN分别与汽车内的两个CAN网络相连,必要时可作为网关使用。汽车车速传感器和发动机转速传感器通常采用霍尔器件,为了改善波形,在输入捕获定时器管脚外使用了施密特电路进行整形。

继续阅读
以太网和CAN总线传输方式比较

从网络的连接来看,CAN总线通过物理信号来进行连接,而以太网则是交换机连接。在以太网连接中交换机是必要的,一旦交换机有所差池整个网络都将崩溃。将整个网络的安危交一台太脆弱的交换机来承担实在是太过于儿戏,而若是设置冗余备用又要增加许多成本。相比之下CAN总线的结构非常简单,仅需拉两条线而已,简洁而稳定。对于安全第一的汽车来讲,无疑是CAN总线更为适合。而且以太网采取超时重发机制,单个节点的故障很容易扩散到整个网络,相较于CAN总线的分级仲裁制度也是逊色了不少。

【Easy IoT with VSCP连载】: 2 –借助Yocto项目,在UDOO上支持CAN总线系统

在进行物联网演示时,我们用基于i.MX6Q的UDOO开发板将采用CAN总线的灌溉系统连接至互联网。该Linux单板计算机将在启动时(/etc/init.d)运行VSCP守护进程,并托管小型网络服务器,它可以连接至更大的“网络管道”或路由IP,其中应用程序在像Rackspace公司、IBM Bluemix、AWS等更大的云托管网站托管。VSCP守护进程注册了自己的“驱动程序”,用于与外界进行通信,同时还有用于各类控制、日志记录,过滤等的内部调度程序。

CAN总线混合动力骄车电控系统的设计与实现

混合动力汽车是一种由内燃机和电动机混合驱动的汽车,其主要特点是节能、环保。这种汽车在起步时用电动机驱动,消除了内燃机起步时由于燃烧不充分而排黑烟的现象。在汽车减速或刹车时,利用发电机把动能转化成电能,贮存到蓄电池中,实现能量回收达到节能的目的。由于这种汽车是内燃机和电动机两种动力并存,仅用传统的针对内燃机的电控系统无法实现两种动力的最佳配合,因此开发混合动力车的全新电控系统是十分必要的。本文以一种电机并联式混合动力汽车成功实现为背景,从系统角度介绍了混合动力汽车电控系统结构、功能及效果。

数据采集配置特点与操作 - 基于CAN总线的新能源汽车电池数据采集方案

随着全球能源和环境问题的不断突显,发展新能源汽车已经成为世界各国的共识,随着科学技术的进步,以节能、环保、安全为终极目标的电动汽车、混合动力电动汽车以及燃料电池电动汽车的研发与应用已成为全世界各国汽车产业发展的重点。我国更是将其列入到七大战略性新兴产业之中。

基于ARM处理器智能电表系统的功能设计与论证

用电管理收费多年来一直采用先用电、后抄表、再付费的传统作业方式,电量值计算方面也无法实现更高的精确度,偏差较大。为了适应社会的需要,保证用户安全、合理、方便地用电,对传统的电表和用电的进行重新设计,使