汽车用永磁无刷直流电机设计

分享到:

        引言

  永磁无刷直流电机是近年随着稀土永磁材料和电力电子技术的迅速发展而发展起来的一种新型电机,随着汽车电子器件的迅猛发展,车用电控单元的日新月异,无刷直流电机在汽车电器设备中的应用受到越来越多的重视。由于其具有调速范围宽、体积小、起动迅速、运行可靠、效率高、寿命长等优点,人们开始将其运用于汽车缓速器的研制方面。

  本文以4 kW无刷直流电机安装于汽车缓速器中的研发为依托,介绍利用VB 6.O编程语言实现永磁无刷电机的设计,并得出实验数据。

  1 无刷直流电动机的基本原理

  用图1所示的无刷直流电动机系统来说明无刷直流电动机的基本工作原理。电动机的定子绕组为三相星形联结,位置传感器与电动机转子同轴,控制电路对位置信号进行逻辑变换后产生驱动信号,驱动信号经驱动电路放大后控制逆变器的功率开关管,使电动机的各相绕组按一定的顺序工作。当转子旋转到图2(a)所示的位置时,转子位置传感器输出的信号经控制电路逻辑变换后驱动逆变器,使VI1,VI6(见图1)导通,及A,B两相绕组通电,电流从电源的正级流出,经VI1流入A相绕组,再从B相绕组流出,经VI6回到电源负极。

 

  电枢绕组在空间产生的磁动势Fa如图2(a)所示,此时定转子磁场相互作用,使电动机的转子顺时针转动。

 

  当转子在空间转过60°电角度,到达图2(b)所示位置时,同理此时VI1,VI2导通,使电动机的转子继续顺时针转动。
转子在空间每转过60°电角度,逆变器开关就发生一次切换,功率开关管的导通逻辑为VI1,VI6→VI1,VI2→VI3,VI2→VI3,VI4→VI5,VI4→VI5,VI6→VI1,VI6。在此周期,转子始终受到顺时针方向的电磁转矩作用,沿顺时针方向连续旋转。

  在图2(a)到图2(b)的60°电角度范围内,转子磁场沿顺时针连续旋转,而定子合成磁场在空间不是连续旋转的,而是一种跳跃式旋转磁场,其步距为60°电角度。转子在空间每转过60°电角度,定子绕组就进行一次换流,定子合成磁场的状态就发生一次跃变。由此可见,电动机有六种状态,每一状态有两相导通,每相绕组的导通时间为转子旋转120°电角度的时间。这种工作方式称为两相导通星形三相六状态。

  只要根据磁极的不同位置,以恰当的顺序去导通和阻断各相出线端所连接的可控晶体管,始终保持转子线圈所产生的磁动势领先磁极磁动势一定电角度的位置关系,便可使该电动机产生一定方向的电磁转矩而稳定运行。可以看出,通过借助逻辑电路来改变功率晶体管的导通顺序,即可实现电动机正反转。

  2 软件设计

  2.1 主程序流程图

  在电机设计过程中,最主要是解决大量曲线图表的问题,本例程采用插值法、拟合法等方法处理大量公式、曲线,虽然会产生小小的误差,但使用起来方便快捷,节省时间。主程序流程图如图3所示。

 

  2.2 编程设计界面

  采用VB 6.O编程语言实现电机设计可视化界面,快速准确地得出欲求数据,节省时间,提高工作效率。如图4所示。

 

继续阅读
直流电机双向调速驱动电路

对于PWM调速的直流电机驱动电路,主要考虑以下性能指标: 1、输出电流和电压范围。它决定着电路能驱动多大功率的电机;2、效率。高的效率不仅意味着节省电源,也会减少驱动电路的发热。要提高电路的效率,可

微型直流电机稳速电路

微型直流电机在磁带录音机中使用较普遍,配套的电子稳速电路如附图所示。 R2、RP、R3、R5、R6组成分压式取样电路,RP是调速电位器,VT1是误差电压放大管。、VT2是调整管,R5、R6(并联)为

基于TB6612FNG和单片机的直流电机控制系统设计

本设计中使用的TB6612FNG是一款新型驱动器件,能独立双向控制2个直流电机,它具有很高的集成度,同时能提供足够的输出能力,运行性能和能耗方面也具有优势,因此在集成化、小型化的电机控制系统中,它可以

基于MCS-51单片机的智能机器人迷宫车设计

机器人在军事侦察、扫雷排险、防核化污染等危险与恶劣环境中以及工业自动化生产的物料搬运上应用很广,随着任务复杂性的增加,对移动机器人的要求也越来越智能化。然而,功能较完备的路径跟踪控制方

精彩活动