基于SOPC技术的医用呼吸机主控系统设计

标签:PWMSOPC
分享到:

        呼吸机是可以代替人的呼吸功能或辅助人的呼吸功能的仪器。它适用于呼吸衰竭、甚至停止呼吸的病人做人工呼吸之用。它能帮助病人纠正缺氧和排出二氧化碳,是挽救某些危重病人生命的重要工具。

  现有的呼吸机产品,其主控系统大多基于单片机来实现,对于功能强一些的产品就需要使用高端单片机,这样使得系统的成本比较高,而且外围的接口模块较多,结构复杂。使用SOPC(可编程片上系统)技术设计主控系统,可充分利用IP核的强大功能,精简外设数量,与此同时只占用了很小部分的资源,大大提高了系统的性价比。

  本文利用SOPC技术设计了持续气道正压通气呼吸机的主控系统,使用了Altera公司的Nios II软核处理器以及一些通用的IP核,笔者基于Avalon总线规范定制了组件,将控制逻辑全部集成至单片FPGA内。

医用呼吸机

  正压呼吸机是利用增加气道内压力的方法将空气送入肺内,肺内的压力增大使肺腔扩张。当压力失去后,由于肺腔组织的弹性,将肺恢复到原来的形状,而使经过交换的一部分空气呼出体外。目前,大部分呼吸机都是利用这种增加气道内压力的方法给病人送气的。

  呼吸机所需的气压采用直流电机来提供,直流电机的控制信号为PWM信号,根据PWM信号的占空比和周期来控制电机的转速。外部接口提供按键来接受命令,设定各种参数。提示信息、状态信息、参数信息通过字符型LCD显示。为了便于对系统进行测试,使用UART为命令控制接口,对系统进行直接控制,该接口在成品后即被隐去。

系统结构

图1 呼吸机系统硬件结构框图

  主控系统的核心FPGA采用Altera公司Cyclone系列的EP1C6T144C8。CPU即为Nios II软核处理器,对整个系统进行统一管理。折线框内为主控板,除下载、调试用的PC机外,对直流电机及主控板需单独供电。直流电机工作后将气流送至面罩内,电机根据端的信号来调节气流的大小。在面罩内装有压力检测模块,通过A/D转换返回至主控板,用来对气流进行回馈调节。面罩供患者使用。

  直流电机控制

  系统使用PWM信号对直流电机进行控制。在SOPC Builder提供的标准IP核中是没有PWM组件的,需要自行定制,PWM组件的输出信号是方波,方波的周期及占空比可调。PWM任务逻辑结构示于图2。


图2 PWM任务逻辑结构

继续阅读
MAPS - K22教程:KSDK2.0+KDS3.0实现PWM

在Kinetis K22 MCU中的TPM模块可实现PWM波形,可以控制比如最近活动的小车电机调速等。这次使用MAPS-K22套件测试一下KSDK2.0的PWM波形的产生,为了查看效果方便,查了一下电路,发现LD3接在PTB1上面,而PTB1是TPM1的CH1通道,正好就那这个做下实验吧。

MAPS四色板体验(二)

实验一 实验目标:利用板载电位器控制LED的亮度变化。 实验原理: (1)FTM(弹性定时器模块)是一个支持输入捕捉、输出比较、产生可用来控制电机的PWM信号和电源管理应用的通道定时器。 每一个通道都可配置为输入捕捉、输出比较或者边缘对齐的PWM模式。 (2)K60的ADC模块支持差分模拟输入和单端输入模式。其中单端支持16位、12位、10位以及8位模式。

MAPS四色板系列K64学习笔记——配置ADC和PWM

第一次接触四色板,飞思卡尔FAE在ECBC授课完以后,正式开始学习K64了。今天跟大家分享的是关于K64的ADC模块和PWM模块的一些配置问题。

掌握MCU软件设计准则 实现直流马达控制精准度提升

300瓦以下的小功率马达适合以MCU做为控制方案,在各家MCU硬件规格差异化日渐缩小之下,软件演算设计就显得相形重要,若能掌握MCU控制各种直流马达的软件设计原则,将能大幅提升马达控制的精准度。

基于DSP IC的工业控制系统的设计

介绍了一套基于直流无刷电机的工业缝纫机控制系统的设计与实现,该系统特点是以霍尔信号的位置和电机的速度进行估算,并在此基础上实现对直流无刷电机的方波控制给出了控制系统硬件和软件的实现方法。实验结果表明:

精彩活动