MF-TDMA卫星通信网络仿真测试研究

分享到:

        MF-TDMA 卫星网络是由地面主站、备用主站、网控中心、众多从站、卫星转发器等单元组成,系统的主要业务是话音、数据、视频,但各卫通站通信能力大小不同,每个地面站作为主叫或被叫,向网控中心站申请卫星信道资源,因此必须对卫星网络资源与信息进行有效管理与调配,使其可以应对各种复杂的突发情况,适应应用任务、网络本身和外部条件的变化,保证卫星网络稳定、可靠、持续和高效运行。

  Rational Rose 工具是美国Rational 公司开发的用于分析和设计面向对象系统的强大工具,可以帮助先建模,再进行功能测试,从而保证系统结构合理、运行正常。Rational Rose 工具支持可视化开发测试用例模型,结合卫星网络的的实际情况,主要进行业务建模、分析建模、设计建模,然后完成用例驱动、迭代和增量测试任务。

  主要介绍卫星网络中比较重要的几个设计要素的测试方法,并通过仿真建模对网络化业务传输要求的TDMA 技术体制进行探讨研究。

  1 网络模型组成及业务流程

  1. 1 网络模型

  以MF TDMA 方式组网应用时,主站发送TDMA参考信号并作为全网各站的时间参考基准、一个备份主站用于主站出现故障时接替主站的工作。一般业务站以主站为参考,并按照主站下发的时隙表在分配给本站的时隙内发送信息。卫星通信网络的实现模型如图1 所示。

卫星网络半实物仿真网络的架构

图1 卫星网络半实物仿真网络的架构

  网络运行中帧同步设计、呼叫业务量的调整、射频链路功率调整等设计方法是网络高效运行的关键技术。为此建立如下测试模型和测试流程。

  测试人员利用序列图取得测试脚本所需的信息,测试过程包括4 个步骤:

  ①将序列图转换为流程图; ②从流程图识别要测试的路径,首先识别入口——出口路径,这样所有的判定分支都会至少被采用一次,每一条跟踪的路径就成为一个测试用例; ③识别特殊的异常情况,即用于开发测试实例以测试与被测实现相关的异常处理; ④识别要采用特定路径所需要的输入和状态,当满足所有的路径条件时就会沿该路径而行,测试用例定义需要满足路径条件的特定输入和状态。最后确定每个测试实例的预期结果,完成测试包,得到的测试包可以用一个规定脚本语言在一个用户测试驱动程序中实现。

  1. 2 MF TDMA 系统定时同步模型

  定时是TDMA 系统的一个关键问题,它为系统运行提供时间基准,是初始捕获和同步保持的基础。

  初始捕获是指地球站开始发射突发时,保证其能够正确地进入指定的时隙,而不会误入其他时隙造成干扰的过程。

  1. 3 申请话音进展模型

  建立一个双工的用户模型,既能作为主叫也能作为被叫。当作为主叫时,用户根据加载的业务发出呼叫请求; 而作为被叫时,则需要对主叫作出必要的应答,以保证通话链路的建立. 整个测试流程如下: 终端用户站发送呼叫申请帧并获取信道分配帧,申请成功后则将信道分配包传给用户进程,若申请失败则通知拥护进程失败的信息,这些过程为流程图识别的测试路径。

  1. 4 射频及链路模型

  射频模型包括上行射频和下行射频2 部分,前者主要是对地面站的发送功率进行处理,后者主要确定误码问题。这里对上行链路做了限制,即申请路径只能传到网控中心; 在下行链路,主要确认卫星模块传来的信号功率是不是到达此链路所连接的射频模块所需要的信噪比,如果是则将其接收,否则予以抛弃。所有的帧传输都要经过一个卫星信道的时延并满足接收站功率控制要求。

  为每个站的调制器的突发信噪比都配置一个值,这个值用于传输功率控制。远端站将它们从控制站收到的参考突发的信噪比报告给控制站,TDMA帧头的一个域就是用于这一目的的,控制站调整它的传输功率电平,将信噪比值控制在一个期望的范围内。各远端站也调整它们的上行功率,使得它们的突发在接收时与参考突发有着相同的信噪比。

  2 测试模型仿真

  2. 1 网络同步参数设置

  同步保持调整间隔时间是指为了保持全网的同步,需要对突发发送时刻进行调整的周期。调整的越频繁,各类误差对同步保持的影响就越小,而调整过程本身带来的开销就越大; 反之各类误差对同步保持的影响就越大,而调整过程本身带来的开销就越小。因此系统设计时应折中考虑。

  同步保持误差是在一定的同步保持调整周期( 同步保持调整间隔时间) 内,突发发送时刻所能达到的准确度。它与卫星漂移引起的误差、时钟稳定度引起的误差、逻辑电路抖动以及调整精度等因素有关。

继续阅读
M2M和物联网市场两者如何共存,物联网专用卫星何时发射?

近年来,要用小至3公斤的卫星搭建星座来满足日益增长的卫星机器对机器(M2M)与物联网市场需求的消息不绝于耳。这一市场需求以往是靠综合采用Ku波段甚小孔径终端(VSAT)以及包括轨道通信公司(Orbcomm)和全球星公司在内的移动卫星业务(MSS)来加以满足。北方天空研究公司(NSR)发现,到2017年底,面向这一需求的在用MSS/VSAT终端数量约有350万台,2027年将增加到约630万台。

5G技术持续领跑,直接影响对应产业链发展方向

在智能手机普及的带动下,2012-2017五年无线通信芯片实现9.7%的复合增长率,根据iHS的数据,2017年市场规模达到1,322亿美金,占全球半导体市场的31%。 展望未来,随着手机出货量及硬件规格升级的放缓,预计行业总体增速下降至2.9%左右。但由于5G需要支持新的频段和通信制式,包括滤波器,功率放大器,开关等射频前端存在结构性增长机会。

中国专家发布领先的通信专用芯片组,网速超5G十倍

近日,中国工程院院士、中国可见光通信产业技术创新战略联盟理事长、国家数字交换系统工程技术研究中心主任邬江兴发布了全球首款商品级超宽带可见光通信芯片组。

成本低,污染小,黑龙江大学研发显示屏新材料!

在当前网络时代,透过一方小小的显示屏幕,成千上万条信息在奔涌,对大尺寸屏幕要求与日俱增,如何在大尺寸屏幕应用中降低显示屏成本,双极蓝光热激发延迟荧光主体材料是关键。

5G 2018年底预商用,芯片是关键

随着《5G技术研发试验第三阶段规范》发布,2018年底实现5G预商用的目标日逐渐清晰。不过,中国证券报记者多方获悉,5G终端芯片及网络设备方面仍然存在一些挑战,5G终端芯片方面的研发很大程度上滞后于系统,芯片技术成为5G能否按期商用的关键。中国信息通信研究院副院长王志勤称,手机是5G商用化的第一梯队产品,也是2020年商用的主打产品,手机芯片的更新换代是5G最大的技术瓶颈。

精彩活动