基于虚拟仪器的微震实时监测系统(1)

分享到:

在详细介绍96路前端微震信号处理单元、PCI数据采集卡DAQ2208和LabVIEW平台下软件设计的基础上,提出了一种基于虚拟仪器微震实时检测的设计方案。
系统通过软、硬件技术结合,实现了对多路模拟量的微震信号采集及其先进的小波变换处理算法,充分发挥了虚拟仪器的优势,很好地完成了对微震的实时监测及分析。
    

随着社会与科学技术的发展,能源问题成了世界关注的焦点,而时常发生的煤矿矿难,使得矿区的安全问题成为了企业与政府关注的重点。这些事故的发生一般与开采后应力的重新分布引起的覆岩破裂有关系,岩石破裂会伴随产生强度较弱的地震波,称为“微震”。
  

微震安全监测系统是通过监测岩体破裂产生的震动或其他物体的震动,对监测对象的破坏状况、安全状况等做出评价,从而为预报和控制灾害提供依据。微震检测系统可广泛应用于矿山岩体破裂的定位监测,是预报矿山压力、矿井突水、煤与瓦斯突出、冲击地压的有效工具,也可根据监测到的岩体破裂的范围和程度,确定导水裂隙带高度、开采上限、巷道布置的合理位置等。因此,设计开发出一套安全有效的微震安全监测系统,成为当务之急。
  

目前,有的微震监测系统是基于DSP[1]或其他单片机的,其资源的有限性很难达到理想的采集效果,也难以完成先进算法的实现。本文设计的微震安全监测系统在工控机的基础上,通过96路PCI采集卡进行微震信号数据采集,同时利用LabVIEW软件强大的图形化编程能力以及灵活多样的数据处理功能,结合先进的小波变换等数字信号处理技术,完成微震信号的采集与滤波处理、记录分析等,从而可确定裂隙带的高度和空间位置,以反演出破裂源的空间位置和破裂时刻破裂源的性质,为矿山的地下安全检测提供可能。


1 系统组成
  

从地下深、浅层界面反射的微地震信号,其能量相差很大,由此系统设计了不同位置的96路采集点以保证把深、浅层反射的微地震信号都记录下来,以便确定震源位置,充分分析地质结构,将采集到的96路信号送给PC工控机进行数据处理与分析,如图1所示。




1.1 硬件总体设计
  

微震信号是一种低频微弱信号,它的主频率约为100Hz,本系统是基于LabVIEW平台下的微震信号采集与处理系统,它主要由微震检波器、前置放大器、低通滤波器、PCI数据采集卡、工控机组成。系统硬件组成原理如图2所示。
继续阅读
恩智浦打造更安全、更智能的AI-IoT新引擎,机器学习新革命或将来临

为了实现保护物联网边缘设备和云至边缘连接安全的愿景,恩智浦半导体将强化的安全子系统和软件生态系统合并成安全执行环境(SEE),以增强可信性、隐私性和保密性。在公司新推出的基于Cortex-M33的解决方案LPC5500微控制器和i.MX RT600跨界处理器中,这些新安全特性形成主要亮点。

AI挥别云端牵手边缘,全新架构帮助其顺利入围

随着人工智能(AI)能力从云端转向边缘,芯片制造商必然会找到可行的方法,在更小、更高效,且成本更低的设备中实现各种AI功能,比如神经网络处理和语音识别等。

所谓的人工智能芯片,就是很多个DSP的叠加?

  所谓人工智能,根据1956年达特茅斯会议的定义,就是“让机器行为看起来就像是人所表现出来的智能行为一样”。不过虽然这句话理解起来很简单,想真正实现却非常困难。在人工智能的发展过程中,逐渐划分出两个发展阶段:强人工智能和弱人工智能。

导电油墨不仅仅是玩具?电路设计辅助利器没准就是它了

线性思考会产生线性结果,却不一定保证成功;真正的创新需要非线性思考,而且往往不会从目标导向的游戏或是实验中发生。有种导电油墨(conductive ink),它不只是玩具,而能协助电子开发者从「玩耍」中产生灵感。

重新审视物联网热潮:存在一些泡沫成分

市场观察家重新审视物联网发展轨迹发现,初期对于IoT的预测都被过度夸大了。但IoT市场仍然具有巨大的潜力,业界厂商和联盟开始从互通性、安全性以及易用性等领域…