利用CAN总线的进行汽车轮速传感器设计

分享到:

 

        信号处理电路

  根据轮速传感器信号特性,处理电路由限幅电路、滤波电路和比较整形电路组成,如图4所示。

处理电路

  限幅电路将轮速传感器输出信号Vi正半周的幅值限制在5V以下,负半周使其输出为-0.6V。滤波电路设计成带反馈的有源低通滤波器,其截止频率为 2075Hz(按最高车速为200km/h设计,传感器输出信号对应的频率),选Q=0.707。比较整形电路中设置一定的比较电压,与滤波器输出信号相比较输出方波信号。LM311N输出方波的幅值为10V,经R5,R6分压后得幅值为5V的方波信号送光电隔离器。

  总线通信电路

  总线接口电路包括传感器与CAN总线接口和仪表板节点与CAN总线接口。通过总线接口电路实现传感器和节点间的数据、控制指令和状态信息的传送。使用总线接口容易形成总线式网络的车辆局域网拓扑结构。具有结构简单、成本低、可靠性较高等特点。

  传感器与CAN总线的接口以CAN控制器SJA1000为核心,通过82C250实现传感器与物理总线的接口。CAN总线物理层和数据连路层的所有功能由通信控制器SJA1000来完成。它具有BasicCAN(82C200兼容模式)和PeliCAN(扩展特性)2种工作模式,采用多主结构,具有与各种类型的微处理器相连地接口。

  SJA1000的引脚功能和电器特性与82C200完全兼容,较82C200具有更强的错误诊断和处理功能。它具有编程时钟输出,可编程的传输速率(最高达1Mbps),可编程的输出驱动器组态,可组态的总线接口,用识别码信息定义总线访问优先权。控制器使用方便、价格便宜、工作环境温度范围(- 40~125℃),特别适合于汽车及工业环境使用。

  82C250作为CAN总线控制器和物理总线间的接口,是为汽车高速传输信息(最高为1Mbps)设计的。它提供对CAN控制器的差动接收功能和对总线的差动发送能力,完全与ISO11898标准兼容。在运动环境中,具有抗瞬变、抗射频和抗电磁干扰性能,内部的限流电路具有电路短路时对传送输出级进行保护的功能。芯片的特色是通过对Rs(8号)引脚输入电平的设计,可工作于3种工作方式:(1)高速方式(Vrs<0.3Vcc);(2)斜率方式 (0.4Vccrs<0.6Vcc);(3)待机方式(Vrs>0.75Vcc)。芯片以高速方式工作时,发送输出晶体管尽可能快的简单地开和关,不测量限制上升和下降的斜率,要用屏蔽电缆来避免射频干扰。当芯片以斜率方式工作时,总线可用非屏蔽的双绞线或并行线。对上升和下降的斜率的限制,取决于Rs引脚到地的连接电阻值,并与Rs引脚的电流成正比。

  SJA1000,82C250的信号电平与TTL兼容,可直接接口。但为提高可靠性和抗干扰性能,在智能传感器的设计中,它们之间用光电隔离。 SJA1000的RD,WR,ALE,INT分别与80C31的RD,WR,ALE,INT0引脚相连。80C31的P0.0~P0.7与SJA1000 的AD0~AD7接口,80C31和SJA1000用统一的5V电源供电。给SJA1000的RX1脚提供约0.5Vcc的维持电位。82C250的 CANH,CANL间并接120Ω匹配电阻后接至物理总线,Rs引脚接地,选择高速方式。传输介质采用屏蔽线,以提高总线接口的抗干扰能力。

  试验结果

  先作信号处理电路试验。用XD5-1信号发生器产生的正弦波模拟传感器信号输入电路,用双踪示波器观察输入输出波形。输入信号在峰值0.6V以上时,电路输出方波、无信号丢失。频率从20~2075Hz,同样,试验也无信号丢失。信号小于0.6V时,无方波输出,即低于0.6V的噪声进不了微机系统。可通过调节电路中R2,R3的阻值改变最小信号的门槛值。在转鼓传感器试验台上对传感器信号作试验。试验结果如表1所示。

试验结果

  BJ212车型前轮的半径是0.375m,磁感应式传感器的齿圈为88齿。表中测速系统显示值与车速表读数值之差是因为车速表误差之故。车速从 3~200km/h,对应的频率从31~2075Hz,设计的测速系统完全覆盖了此车速范围。用非接触式红外测速表检验时,误差在0.3%之内,证明了传感器及信号处理电路的合理性。与仪表盘节点的信息传输试验:传感器测速系统与仪表盘节点的接收和发送信号一致;发送和接收到的信号的数据格式与设定的11 位数据格式一致。

  结论

  基于CAN总线的轮速传感器充分发挥了磁感应式传感器的潜能,具有车速识别的门槛值低(3km/h)、测量准确度高、实用性和抗干扰性强、工作可靠等优点,适合在汽车运动环境中使用,且易于与其它测控节点组成网络,实现传感器数据的网络化传输。

继续阅读
以太网和CAN总线传输方式比较

从网络的连接来看,CAN总线通过物理信号来进行连接,而以太网则是交换机连接。在以太网连接中交换机是必要的,一旦交换机有所差池整个网络都将崩溃。将整个网络的安危交一台太脆弱的交换机来承担实在是太过于儿戏,而若是设置冗余备用又要增加许多成本。相比之下CAN总线的结构非常简单,仅需拉两条线而已,简洁而稳定。对于安全第一的汽车来讲,无疑是CAN总线更为适合。而且以太网采取超时重发机制,单个节点的故障很容易扩散到整个网络,相较于CAN总线的分级仲裁制度也是逊色了不少。

【Easy IoT with VSCP连载】: 2 –借助Yocto项目,在UDOO上支持CAN总线系统

在进行物联网演示时,我们用基于i.MX6Q的UDOO开发板将采用CAN总线的灌溉系统连接至互联网。该Linux单板计算机将在启动时(/etc/init.d)运行VSCP守护进程,并托管小型网络服务器,它可以连接至更大的“网络管道”或路由IP,其中应用程序在像Rackspace公司、IBM Bluemix、AWS等更大的云托管网站托管。VSCP守护进程注册了自己的“驱动程序”,用于与外界进行通信,同时还有用于各类控制、日志记录,过滤等的内部调度程序。

CAN总线混合动力骄车电控系统的设计与实现

混合动力汽车是一种由内燃机和电动机混合驱动的汽车,其主要特点是节能、环保。这种汽车在起步时用电动机驱动,消除了内燃机起步时由于燃烧不充分而排黑烟的现象。在汽车减速或刹车时,利用发电机把动能转化成电能,贮存到蓄电池中,实现能量回收达到节能的目的。由于这种汽车是内燃机和电动机两种动力并存,仅用传统的针对内燃机的电控系统无法实现两种动力的最佳配合,因此开发混合动力车的全新电控系统是十分必要的。本文以一种电机并联式混合动力汽车成功实现为背景,从系统角度介绍了混合动力汽车电控系统结构、功能及效果。

数据采集配置特点与操作 - 基于CAN总线的新能源汽车电池数据采集方案

随着全球能源和环境问题的不断突显,发展新能源汽车已经成为世界各国的共识,随着科学技术的进步,以节能、环保、安全为终极目标的电动汽车、混合动力电动汽车以及燃料电池电动汽车的研发与应用已成为全世界各国汽车产业发展的重点。我国更是将其列入到七大战略性新兴产业之中。

基于ARM处理器智能电表系统的功能设计与论证

用电管理收费多年来一直采用先用电、后抄表、再付费的传统作业方式,电量值计算方面也无法实现更高的精确度,偏差较大。为了适应社会的需要,保证用户安全、合理、方便地用电,对传统的电表和用电的进行重新设计,使

精彩活动