汽车计算平台新技术综述

分享到:

        引言

  目前,世界上有多达十多种车辆网络标准,其中最主要的有:控制器局域网CAN-BUS(Controller Area Network),局部互联协议LIN(Local Interconnect Protocol);车辆多媒体网络IDB1394 等,值得注意的是具有高速容错功能的网络协议FlexRay,它的发展非常迅速。FlexRay 标准联盟的出现,以及面向对象联接的CANopen 标准的广泛应用预示着汽车电子技术向智能化迈出了重要一步。

  国际上在汽车工业巨头和电子信息技术公司的合力推动之下国际标准化组织于1992 年基于CAN-BUS 发布了ISO11898 标准,为日后汽车计算平台联盟和相关标准的出现奠定了工业化基础。CAN-Bus 经过20 年的发展,目前在汽车动力总成中已占据85%的市场份额。2008年全球主要汽车生产厂商生产欧III / 欧Ⅳ排放标准以上的汽车后,采用CAN-BUS 的汽车即将超过95%,基于CAN 和ISO11898 标准,美国SAE(汽车工程学会)在10 年前组织制定的SAE J1939 被认为是全球范围内最开放和最具响应力的汽车网络标准之一,在欧III以上的商用车型中100%采用J1939 构造汽车计算平台,主要用于发动机、变速箱、燃料箱和仪表等传动系统的互联。

  在国际CAN 行业组织的CiA 的推动下2002 年国际标准化组织ISO 又发布了简称为ISO BUS 的国际标准ISO11783,ISO BUS、J1939 和CANopen 均是基于CAN-BUS 的网络标准,这些标准的相互连接构成了面向未来的复杂汽车系统的网络计算平台,特别是CANopen 对未来主导市场的环保汽车(混合动力汽车、电动汽车和燃料电池汽车)多功能汽车、工程机械及客车车身控制网络起着决定性的作用。2000 年起FlexRay 联盟的成立,推动着汽车网络计算平台向车辆安全控制系统方面标准化的发展。

  LIN 作为CAN 网络的补充,是一种低成本的通讯标准,1998 年由国际上著名的汽车厂商和电子厂商在德国组成了LIN BUS 联盟组织,LIN BUS 主要用于车内灯光、后视镜和座椅调节等非安全性部件的互联。IDB1394 和MOST 总线则是目前为汽车多媒体网络和消费类电子产品的互联建立的平台型标准。

  上述汽车网络平台标准的制定均没有中国企业的参与,这是我们汽车工业落后的主要原因。但特别应引起我们注意的是UWB 无线超宽带技术的成熟应用将很有可能成为新一代汽车网络多媒体总线的国际性标准。由中国提出的“闪联”标准于2006 年7 月1 日已正式被国际标准化组织ISO 接纳。这为中国企业为主参与新的汽车网络计算平台国际标准的制定奠定了基础。

  一、汽车安全与FlexRay 计算平台

  从车辆工程角度上看,CAN 的速率、可靠性和成本指标在汽车的动力系统总成中应用是最为适宜的。但对于安全等级需求更高的系统,如转向控制和制动系统及安全气囊的网络互联问题则应制定一个新的标准,这就是FlexRay。CAN 的成功应用及FlexRay 的标准开发推动了新的X-by-wire 车辆系统设计思想的完善,也导致了车辆系统对信息传送速度尤其是对故障容错与时间确定性的需求的不断增加。FlexRay 通过在确定的时间槽中传递信息,以及在两个通道上的故障容错和冗余信息的传送,满足了这些新增加的要求。

  FlexRay 作为下一代汽车网络协议,提供了充足的带宽、可靠性和实时响应能力,以实现线控应用,如安全气囊、制动、转向和车辆稳定性控制系统。该标准已开始被越来越多的汽车制造商采用。

  FlexRay 是一种用于汽车的高速可确定性的,具备故障容错的总线系统,它的基础源于戴姆勒·克莱斯勒公司(奔驰公司)的典型应用以及BMW 公司(宝马公司)byteflight 通信系统开发的成功经验。Byteflight 是BMW 公司专门为被动安全系统(气囊)而开发的,为了同时能够满足主动安全系统的需要,在Byteflight 协议基础之上,被FlexRay 协会进一步开发成了一个与确定性和故障容错有密切关系的,更可靠的高速汽车网络系统。今天,BMW,Daimler· Chrysler,General Motors,Ford,Volkswagen 和一些半导体公司如Bosch,Freescale,Philips 等组成了FlexRay 联盟。2006 年应用FlexRay 技术的汽车将进入市场。

  1、FlexRay 的传输介质和访问

  FlexRay 符合TDMA(Time Division Multiple Access)的原则,部件和信息都被分配了确定的时间槽,在此期间它们可以唯 一的访问总线。时间槽有固定的重复周期。信息在总线上的时间是完全可以预测出来的,因而对总线的访问是确定性的。

  不过,通过为部件和信息分配时间槽的方法来固定的分配总线带宽,其不利因素是导致总线的带宽没有被完全的利用。出于这个考虑,FlexRay 把周期分成了静态段(Static Seg.)和动态段(Dynamic Seg.),确定的时间槽适用于位于信息开始的静态段。在动态段,时间槽是动态分配的。每种情况下都只有一小段时间是允许唯一的总线访问的(这段时间称为 “mini-slots”),如果在mini-slot 中出现了总线访问,时间槽就会按照需要的时间来扩展。因此总线带宽是动态可变的。

FlexRay 的通信周期、帧的静态、动态部分的结构示意

图1 FlexRay 的通信周期、帧的静态、动态部分的结构示意

继续阅读
设计工程师五步实现FlexRay稳健网络拓朴

FlexRay已开始在单通道高速动力传动、驾驶辅助和提高舒适程度的汽车电子应用中大展身手。在新款BMW X5汽车中,FlexRay用于悬架控制之中,这样就可以在利用双通信信道和总线监控把这种具有容错功

FlexRay在高速汽车网络系统中的应用

  FlexRay实现的初期功能是迈向全自动无人驾驶(或近乎全自动驾驶)的第一步。虽然最早的设想是实现汽车线控(X-by-wire)(线控驱动、线控驾驶等),然而其他发展趋势也在推动FlexRay

支持未来车载安全系统中的主要技术

今后的车载安全系统的主要技术中,现在已得到广泛关注的是车载网络FlexRay。比起现今的主流产品CAN,FlexRay的特点是其高速性和高可靠性。在对驾驶盘、刹车、车身稳定等进行控制的未来车载电子控制系统中,FlexRay起着至关重要的作用。

FlexRay -设计、功能和应用

在FlexRay功能的基础上,我们将在下文中探讨潜在的应用领域。然后,我们将更加详细地介绍在FlexRay中使用的三种机制,并列举一系列示例来讨论FlexRay的几种应用。最后,我们将讨论可行和不可行拓扑的示例,并简要论述唤醒集群的场景。在本文的最后,我们将讨论如何计算最优的消息大小。

汽车总线协议的形势判断

本文通过讨论汽车网络协议,如CAN、LIN、MOST、IDB-1394、TTCAN、FlexRay和TTP等,分析了下一代汽车网络的发展趋势。希望这一讨论能够为正在蓬勃发展的中国汽车制造业以及汽车配件制造业提供一些借鉴。

精彩活动